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Dehazing in hyperspectral images: 
the GRANHHADA database
Sol Fernández Carvelo 1,2,4, Miguel Ángel Martínez Domingo 3,4, Eva M. Valero 3,4 & 
Javier Hernández Andrés 3,4*

In this study, we present an analysis of dehazing techniques for hyperspectral images in outdoor 
scenes. The aim of our research is to compare different dehazing approaches for hyperspectral images 
and introduce a new hyperspectral image database called GRANHHADA (GRANada Hyperspectral 
HAzy Database) containing 35 scenes with various haze conditions. We conducted three experiments 
to assess dehazing strategies, using the Multi-Scale Convolutional Neural Network (MS-CNN) 
algorithm. In the first experiment, we searched for optimal triplets of spectral bands to use as input 
for dehazing algorithms. The results revealed that certain bands in the near-infrared range showed 
promise for dehazing. The second experiment involved sRGB dehazing, where we generated sRGB 
images from hyperspectral data and applied dehazing techniques. While this approach showed 
improvements in some cases, it did not consistently outperform the spectral band-based approach. 
In the third experiment, we proposed a novel method that involved dehazing each spectral band 
individually and then generating an sRGB image. This approach yielded promising results, particularly 
for images with a high level of atmospheric dust particles. We evaluated the quality of dehazed 
images using a combination of image quality metrics including reference and non-reference quality 
scores. Using a reduced set of bands instead of the full spectral image capture can contribute to 
lower processing time and yields better quality results than sRGB dehazing. If the full spectral data 
are available, then band-per-band dehazing is a better option than sRGB dehazing. Our findings 
provide insights into the effectiveness of different dehazing strategies for hyperspectral images, with 
implications for various applications in remote sensing and image processing.

In outdoor scenes, atmospheric phenomena such as fog or haze can cause problems with object identification 
or related tasks.

The main differences between fog and haze are the particle size and their  concentration1,2. In this study, for 
simplicity’s sake we will refer to both fog and haze as haze from now on. When light passes through the atmos-
phere, scattering and absorption phenomena produce a reduction in intensity, which increases with the distance 
between the object and the observer (camera)3,4. Thus, images captured under haze are affected by a reduction 
in contrast and visibility, as well as by color  alteration5. Depending on the purpose for which the images are 
used, overcoming this problem can be quite critical. That is why dehazing techniques started to be developed, 
being a far-reaching field of research in a continuous process of improvement. Their application domains are 
flight and  navigation6, driving  assistance7,8, face  recognition9, mobile  devices10, remote  sensing11,12 or  medicine13 
among others. These techniques aim to eliminate or reduce the degradation of outdoor images, and consequently 
improve their quality. The dehazing algorithms can be classified according to whether they use a single image 
or multiple  images14. Other classifications distinguish between methods that are based on physical models and 
methods that are not, the latter including those that use deep learning (combining different strategies in network 
design and training) or post-processing15. Although all these strategies have been thoroughly researched and 
developed, probably the most widely used single-image strategies are currently those based on deep  learning16.

Driven by the need for data to test dehazing approaches, the number of image databases that contain simu-
lated or real hazy images has also grown sustainedly. Building a database for dehazing applications may have 
inherent difficulties if it aims for providing ground-truth as well (i.e., images with no haze at all). The ideal situ-
ation would be that the completely dehazed image would be identical to the reference image captured in clear 
conditions. But this will be very rarely the case given the variability in atmospheric conditions. Therefore, the 
use of both computationally simulated haze and machine-generated haze databases has become a widespread 
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procedure in the field of dehazing techniques. If we focus on the procedure to obtain the hazy image, we can 
divide the datasets into three main blocks: 1) databases where haze has been computationally simulated such as 
FRIDA, FRIDA2, FROSI, Foggy Cityscapes and Foggy Cityscapes Dual-reference cross-Bilateral Filter (City-
scapes), D-HAZY, HazeRD, RESIDE (ITS, SOTS and OTS)17, LIVE Image Defogging Database  Release18, MRFID 
Image  Defogging19 or Waterloo IVC Dehazed Image  Database20; 2) databases where haze has been artificially 
generated by machines such as CHIC, SHIA, I-HAZE, STF, and NH-HAZE17 and 3) real image databases such as 
Foggy driving and Foggy Zurich (Cityscapes), O-HAZE, RESIDE (HSTS and RTTS), RADI-ATE, FOVI, DAWN 
and  HUDRS17, BeDDE and  exBeDDE21,22, WILD, Dense-Haze and  AMOS14, NWPU-RESIC45, NWPUVHR-10, 
DOTA and  RSOD23,  FINEDUST24 or RGB/NIR Data  Set25. Among all these, only the SHIA  database26 contains 
hyperspectral image data from two very similar indoor scenes where the haze was artificially generated with a 
machine in an indoor environment and under fully controlled conditions, and RGB/NIR Data  Set25 contains 
images captured with two devices, a RGB camera and an infrared capture device. Hyperspectral images have 
proven to outperform RGB images in many instances of image processing tasks including  dehazing26,27, making 
it worth the additional effort required due to longer capture times and expensive capture devices. Despite this 
fact, hyperspectral image data are not commonly used for dehazing.

In a previous  study27, the search for an optimal triplet of spectral bands that could be used as input for the 
dehazing algorithms was carried out using the SHIA  database26, which has only two indoor scenes with artificially 
generated fog. The aim was to show how from the complete spectral information, one could choose to simplify 
the capture process with comparable results in terms of efficiency in the dehazing process. In this study, we use 
a new hyperspectral image database with 35 scenes including no haze, natural haze and simulated haze condi-
tions. The focus of our research is to compare different approaches for dehazing hyperspectral images with one 
single algorithm. We introduce a new method for dehazing hyperspectral images which is performing a dehazing 
for all the bands in the spectral image and then generate a rendered sRGB dehazed image. This method will be 
compared with other two approaches previously used  in27, which are the optimal triplet of bands and simple 
sRGB dehazing using sRGB renditions of the hyperspectral images. To deal with the case of real haze images for 
which a reference haze-free image is not available, we introduce an adaptation of the combined quality metric 
introduced  in27 that uses non-reference image quality metrics as its main components. The new hyperspectral 
image database is called GRANHHADA (acronym for GRANada Hyperspectral HAzy DAtabase) and contains 
a total of 35 scenes, available for public access through.

To show the potential of this new database, we aim to find the best strategy for obtaining dehazed images in 
the GRANHHADA database, testing three different approaches: the first one is to find optimal triplets of bands 
for dehazing; the second one is generating sRGB rendered images and dehazing them; and the third one is per-
forming a dehazing for all the bands in the spectral image and then generate a rendered sRGB dehazed image. 
The dehazed images produced in the second and third approaches can be directly compared, while the optimal 
triplets will not in general be visually comparable with standard sRGB images. To perform the dehazing, we have 
chosen the MSCNN algorithm, based on deep learning and widely  used28,29. The main contributions of this work 
are: the proposal of a new database of hyperspectral images captured outdoors with simulated and real haze; 
the discussion about the best procedure for dehazing hyperspectral images; and the evaluation of results using 
a new combined metric proposed constructed from three of the best-known non-reference metrics. This paper 
is organized as follows: Section "Method" describes the new database and the haze simulation model used, the 
quality assessment metrics used and the search methodology for the best triplet; Section "Results" shows the 
analysis of the results and the comparison between the different strategies followed; and finally, Sect. 4 sum-
marizes the most relevant conclusions and possibilities for future work.

Method
Granada hyperspectral hazy database (GRANHHADA)
Outdoor scenes capture
The GRANHHADA database includes 35 outdoor scenes which were captured at different locations near the city 
of Granada (Spain) and under different atmospheric conditions. Granada city has a latitude of 37°10′41″N, a lon-
gitude of 3°36′03″W, and an altitude of 684 m. Two capture devices which cover either visible and near-infrared 
(VIS/NIR, from 397 to 1004 nm) or only near-infrared (SWIR, from 900 to 1700 nm) were used. Fifteen scenes 
were captured on a very clear winter day without any fog or haze. Ten of them (five in the VIS/NIR range and 
five in the SWIR range) were captured from the observation tower of the Parque de las Ciencias Museum (50 m 
high). The remaining five scenes in clear conditions were captured from an elevated location above the village 
of Las Gabias. Twenty additional scenes were captured in presence of haze of natural origin and in the VIS/NIR 
range: ten of them from an elevated location above the city of Granada; seven from the rooftop of a building in 
Granada and thirteen from the elevated location above the village of Las Gabias. These scenes have been used 
to obtain the simulated hazy images in the database, with the procedure explained in section "Haze simulation".

The capture device used for the VIS/NIR range was a SPECIM-IQ hyperspectral  camera30 based on a CMOS 
sensor with 512 × 512 pixels spatial resolution, with 204 bands. For each scene, a raw capture of the scene and 
a raw capture of a reference white sample as well as a dark image were captured. With this information, the 
spectral reflectance image was then calculated by correcting each pixel of the raw image by applying a flat field 
correction, such that:

(1)Cuberef =
(Cuberaw − Cubedark)

(Cubewhite − Cubedark)
× whiteref
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where  Cuberaw refers to the raw capture of the scene,  Cubewhite to the raw capture of the white sample,  Cubedark 
to the dark image, whiteref to the spectral reflectance of the white reference tile used to capture Cubewhite, and 
 Cuberef is the corrected reflectance cube.

In the SWIR range (from 888 to 1732 nm), the capture device used was a PIKA NIR-640 hyperspectral 
 camera31. This camera is based on a linear sensor (InGaAs) with 640 pixels of spatial resolution and 336 bands, 
which we reduced to 168 using spectral binning (averaging between adjacent bands).

This camera is radiometrically calibrated to convert raw sensor responses to radiance, so the radiance cube 
is obtained directly.

For the experiments in this study, we have used the thirty images in the VIS/NIR range. The images in the 
SWIR range have not been used for the experiments described in the following sections for brevity’s sake, but 
they are included in the GRANHHADA database and can be of potential interest for the scientific community. 
We have divided the VIS/NIR used in the experiments into two subsets: image subset 1 (10 scenes) is formed 
by images with simulated haze, and image subset 2 (20 scenes) by images with real haze. The two subsets will 
be analyzed separately.

Haze simulation
Due to the low ambient humidity and the prevalence of light winds, the annual rate of foggy days in Granada 
is remarkably low. For this reason, and for the intrinsic interest of being able to introduce different conditions 
in the database, we have used image subset 1 to simulate haze based on the dichromatic atmospheric spreading 
 model32. This is a commonly used method for haze  simulation33–39. The dichromatic model combines two terms 
(direct transmission and airlight). The spectral radiance of the image at each scene point in the simulated hazy 
scene, I(x,λ), is then obtained as:

where x = (x1,x2) is the vector containing the 2D pixel coordinates in the image, λ is the wavelength, L0(x,λ) is 
the spectral radiance in the original scene, L∞(x, λ) is the spectral radiance from the horizon, β(λ) is the atmos-
pheric extinction coefficient, and d(x) the distance between the object in spatial location x and the capturing 
device. The values for β(λ) in the visible range have been provided by The Andalusian Global Observatory of 
the Atmosphere (AGORA). These values are automatically recorded daily for three wavelengths (450, 550 and 
700 nm) in the Interuniversity Institute of the Earth System in Andalusia, IISTA-CEAMA (Granada), using an 
integral Nephelometer (TSI, model 3563).

To make the simulation as realistic as possible, the representative values for β(λ) correspond to a day and time 
where the presence of haze in the city was clearly noticeable (November 21, 2021, 08:44 AM). For wavelengths 
above 700 nm, the data collected in the city of Tomsk and the NIR range by Pachenko et al.40 were used to obtain 
a trend to extrapolate our extinction coefficient curve to the 700–1000 nm range. Thus, the extinction coefficient 
from 400 to 700 nm corresponds to the data recorded in Granada and from 700 to 1000 nm it follows the trend 
of the data recorded in Tomsk under smog conditions in autumn (see Fig. 1). To ensure a seamless transition 
between both sets, the NIR range data were adjusted by vertically displacing the linear fit until the value for 
700 nm was equal to the visible value measured in Granada.

To obtain the distance distribution (d(x) in Eq. 2), we have used a simple vertical distance gradient model 
formed by using adjacent linear fits, which assumes that all points in the scene that lie on the same horizontal 

(2)I(x, �) =
(

L0(x, �)× e−β(�)d(x)
)

+

(

L∞(x, �)×
(

1− e−β(�)d(x)
))

Figure 1.  Extinction coefficient values interpolated between 400 and 1000 nm, using the recorded data on 
November 20, 2021, 08:44 AM for wavelengths 450, 550 and 700 nm by AGORA, and the extrapolation to the 
NIR range from Pachenko et al.  data40.
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line are at the same distance from the camera. This assumption does not hold in all cases, but it does generally 
work fine as an approximation. We have located singular buildings and Google Earth provided the distance in 
a straight line between the buildings and our camera location. With these data, we were able to build the initial 
distance data distribution for each scene, and then interpolate the values in between distance markings. To obtain 
the distance gradient data, different singular buildings and points of interest in the city have been identified and 
located using Google Earth software. All the pixels along the line of these singular elements have been assigned 
the same distance value (see Fig. 2). A piecewise linear fit has been used to obtain the missing d(x) values for 
the lines between each two singular elements in the scene. For instance, the first piecewise linear fit in Fig. 2 is 
the line that passes through points (0,150) and (N, 300), where N =  Y2-Y1, being  Y2 the vertical pixel position 
of the 300 m horizontal mark in Fig. 2 and  Y1 the vertical pixel position of the 150 m horizontal mark. This line 
is displaced in the horizontal axis to start at  Y1 value, and the pixels with lower Y pixel positions are assigned a 
fixed d(x) value of 150 m. The following restrictions have been imposed: 1) the objects above the farthest singular 
element are at equal distance from the camera, and 2) the points below the nearest singular element are at equal 
distance from the camera. The horizon radiance value has been set to 1 (pure white), which is a common practice 
in haze simulation in previously published  work33.

The main limitations of the simulated haze model used are the vertical gradient model with the two restric-
tions in the extremes of the distance range, and the spatial homogeneity of the simulated haze. We are aware of 
these limitations, but we are still interested in keeping a simple simulation model to be able to discuss the dif-
ferences with the real hazy scenes in the database. Any of the scenes captured in clear conditions can be used to 
apply more sophisticated haze simulation models by anyone interested in testing them, but this was not among 
the aims of our study.

Image quality metrics
Different image quality assessment (IQA) strategies can be used to evaluate the visual quality of an image, either 
objectively or  subjectively15. In the context of dehazing, higher quality means less haze present in the image and 
more objects that can be distinguished. Depending on the availability and/or type of the reference image, objec-
tive assessment metrics can be divided into three groups: full reference  metrics41–47, reduced reference  metrics48–51 
and non-reference  metrics17,52–57. When the reference image (haze-free image) is available, the metrics usually 
employed to evaluate the performance of dehazing algorithms are the full reference ones. In this work, we have 
used CM-DIE26, defined as shown in Eq. (3),

where W1, W2 and W3 are relative weights with values 0.5932, 0.3031 and 0.1037 respectively, for the metrics 
MSSSIM42, VIF47 and MSiCID41. The relative weights have been calculated using the average values of MSS-
SIM, VIF and MSiCID for image subset 1. Given that  MSSSIMm,  VIFm and  MSiCIDm are the average values of 
the metrics SSIM, VIF and MSiCID for the images contained in image subset 1, to calculate the weights  W1 , 
 W2 ·and  W3 ·we impose the following conditions:  W1 · (1 −  MSSSIMm) =  W2 · |1-VIFm|=  W3 ·  (MSiCIDm), and 
 W1 +  W2 +  W3 = 1. Since the weights  Wi have been calculated specifically for image subset 1, if the metric were to 
be used for different images or different distortions (for instance, image compression or noise), then the weights 
should be re-computed using the same procedure described above. The metric could then be used (with differ-
ent weights) for other applications, with the same design principle. The closer the value of CM-DIE is to 0, the 
more similar the two images compared are. An image exactly equal to the reference image results in CM-DIE 
values of zero. However, the upper limit is not defined because it depends on the maximum values of the three 
components for image subset 1. This upper limit then cannot be defined in an absolute way, but it is dependent 
on the particular set of images used to compute the weights.

(3)CM − DIE = W1 · (1−MSSSIM)+W2 · |1− VIF|+W3 · (MSiCID)

Figure 2.  Example of one of the scenes with simulated haze (false RGB contained using bands which 
correspond to 645, 563 and 440 nm) and distance map generated by the linear adjustment for that scene.
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The full reference metrics cannot be used when haze free images are not available. Therefore, for the 20 images 
of image subset 2, we have used three non-reference metrics to build a combined new quality metric on the same 
principle as CM-DIE: Blind/reference-less Image Spatial Quality Evaluator (BRISQUE)53, Natural Image Quality 
Evaluator (NIQE)54 and Perception-based Image Quality Evaluator (PIQE)55. In all three cases, the lower the 
value of the metric, the better the quality of the evaluated image. The new metric is called CNM-DIE (Combined 
Non-reference Metric for Dehazed Image Evaluation), and it is defined as:

where  W4,  W5 and  W6 are relative weights with values 0.1008, 0.8226 and 0.0766 respectively. These weights are 
computed using the average values of the three-component metrics for the scenes in image subset 2, and the con-
dition that  W4 ·  (BRISQUEm) =  W5 ·  (NIQEm) =  W6 ·  (PiQEm). The closer to 0 the value of CNM-DIE is, the higher 
the quality of the evaluated image. The range of values for the CNM-DIE metric is higher than for CM-DIE.

Results
We have performed three dehazing experiments using 30 images of the GRANHHADA database. As explained 
in section "Outdoor scenes capture", the images are divided into two subsets: image subset 1 contains 10 images 
with simulated haze, and image subset 2 contains the 20 images with real haze. The quality of the dehazing results 
for all the experiments will be evaluated using CM-DIE and CNM-DIE for image subset 1, and CNM-DIE for 
image subset 2. We will describe each experiment and the results obtained for the two image subsets in the next 
subsections.

Experiment 1: optimal triplet search
Experiment 1 workflow
In this experiment, we will select triplets of bands from the full spectral images of the GRANHHADA database 
and evaluate the results of dehazing with MS-CNN by calculating the CM-DIE and/or CNM-DIE values. The 
optimal triplet is found by brute force from a set of candidates. For each candidate triplet and each image, dehaz-
ing is performed and the quality metrics are evaluated. The best triplet for each image subset and metric is the 
one with the lowest quality metric value in average for the image subset used. The workflow of this experiment 
is shown in Fig. 3 for image subset 1, and it is very similar to the procedure used for optimal triplet search  in27. 
We start with the full hyperspectral image, then a subset of three bands is selected with the restrictions explained 
below. The average grayscale image is generated and enhanced (just for visualization purposes) using the ‘imad-
just’ function in Matlab. This function adjusts the intensity values in the grayscale image, thereby increasing its 
contrast. By default, it extends the intensity range by saturating the bottom 1% and the top 1% of pixel values in 
the image. This prevents the image from appearing overly dark or light. The three channel images are normalized 
to have their values ranging between 0 and 1, previous to the image quality metrics computation. The workflow 
is identical for the haze-free and hazy images, save for the dehazing algorithm that is used on the second. The 
grayscale images are generated just for visualization of results, but the dehazing quality is computed from the 
dehazed triplets.

To obtain the set of candidate triplets, we start from a spectrally cropped version of the hyperspectral image, 
containing 198 channels. We have suppressed the first 6 channels due to the low responsivity of the Specim IQ 
camera CMOS sensor. Then, we build the set of candidate triplets using the following restrictions: a) initial 
set of bands with wavelengths differing by at least 6 nm; b) bands ordered from longest to shortest wavelength 

(4)CNM-DIE = W4 · (BRISQUE)+W5 · (NIQE)+W6 · (PIQE)

Figure 3.  Workflow for experiment 1. Upper row: haze-free image. Lower row: hazy image. 3CH means three-
channel image, formed by the candidate band triplet. The imadjust function from Matlab is used to enhance the 
contrast of grayscale/sRGB images in order to better visualize some details on them.
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following the order of the channels of a conventional RGB image; c) a minimum distance of 100 nm between 
adjacent channels. This way, the possible combinations have been reduced from 7,880,599 (with no restrictions) 
to 13,671, allowing a shorter run time for the evaluation of the performance of all combinations. As explained 
before, the triplet among the 13,671 that obtains the lowest quality metric values is considered the optimal triplet.

Experiment 1 results
Image subset 1 is affected by simulated haze as explained in section "Haze simulation", while image subset 2 con-
tains real haze with some atmospheric dust in suspension. In Table 1, the bands and metric values corresponding 
to the optimal triplets found for each metric and image subset are shown, along with the standard deviation, 
the mean, the median and the range covered by the average metrics values across the images for each subset.

The optimal triplet found depends to some extent on the metric used, but the trends found are similar for 
all three components of the compound metrics. For image subset 1, the three wavelengths with the highest 
frequency of occurrence in the optimal triplets are above 780 nm for CM-DIE, and somewhat lower for CNM-
DIE, but still covering from red to near infrared. It is not surprising to find that MS-CNN performs better in the 
infrared range because the radiation penetrates more into the haze and, therefore, the input images tend to be 
less hazy. For image subset 2, only one of the three most frequently selected wavelengths is in the NIR region. 
The results are then different from the ones obtained for image subset 1, but the type of haze is also different, 
and this influences the results of the dehazing as well. The haze affecting image subset 2 is formed by dust red 
particles, which scatter the red wavelengths significantly. The mean and median values across triplets are similar 
in all cases, but only for subset 1 and CNM-DIE the median is below the mean. The relative variation shown 
by the range of values (sixth column of Table 1) is higher for CM-DIE than for CNM-DIE, showing a trend for 
higher data dispersion in this metric.

As it has been proved in previous studies, there is not always a satisfactory correlation between the quality 
metrics and visual  evaluation58. Therefore, we have also generated grayscale images of the optimal triplets for 
each algorithm and each scene. Since the optimal triplets are different for each subset and metric, using false 
RGB images with these triplets would make a direct visual comparison very inaccurate. In Fig. 4, we show some 
of these images corresponding to the best- and worst-case scenario among the images tested, along with a dif-
ference image between hazy and dehazed displayed with a heat map false color scale.

In Fig. 4 above left, we see a noticeable effect of the dehazing in the mountains profile and the buildings in 
the mid-distance central region of the image. The effect is less noticeable for the other two images (center and 
right), because the haze is less noticeable in the hazy image as well. The difference images in false color show 
also some effect of the dehazing in the middle and near distance portion of the images, which are less perceptible 
when comparing directly the hazy and dehazed scenes. In the worst cases (Fig. 4 lower row), there is little dif-
ference between hazy and dehazed images (save for the left and central image in the mid-distance portion of the 
scene), and the further distance regions in the images do not register any change. In the difference images, it is 
observed how the effect of the dehazing is more apparent for the scene on the right, belonging to image subset 
2. These worst cases correspond to scenes in which the haze is high or there is cloud cover in more than half of 
the scene. Since haze strongly depends on distance and our scenes include a wide range of distances, the effects 
of dehazing tend to be more noticeable in the mid-portion section of the scenes, because for the near distances 
there is not enough amount of haze, while for the long distances in some cases there tends to be too much haze 
for the dehazing algorithm to work effectively. In general, we can say that there is a certain correlation between 
the metrics’ results and a visual assessment of the quality of the dehazed images.

Experiment 2: sRGB dehazing
In this experiment, we will use the visible range of the hyperspectral scenes to build an sRGB image, and then 
perform the dehazing. This way, we will be able to compare our previous results using only spectral information, 
with the standard way in which the dehazing algorithms are designed to operate, i.e., using RGB images as input.

Experiment 2 workflow
In Fig. 5 we show the schematic workflow for sRGB dehazing. We have used the spectral radiance at all wave-
lengths within the visible to generate the CIE 1931 XYZ tristimulus values, and from these, we have obtained an 
sRGB image using the standard transformation, that converts a spectral image, represented as spectral bands, 
into a color image. This conversion can be done in three different color spaces: XYZ, Lab, and sRGB. The result-
ing color image was also contrast-adjusted. In this case, each color channel (Red, Green, Blue) of the input 
color image is adjusted independently. The adjusted channels are then combined to create the output adjusted 

Table 1.  Optimal bands and optimal metric values found for the optimal triplets for each image subset 
and metric. The mean and standard deviation of the metric values for the full set of triplets is indicated in 
parenthesis in the third column, the median in the fourth column and the range of values in the fifth column.

Optimal bands (nm) Metric optimal value (STD) Metric mean value Metric median value Metric range

Subset 1 CM-DIE 988, 887, 787 0.342 (0.097) 0.429 0.432 0.342–0.495

Subset 1 CNM-DIE 951,850, 643 10.800 (0.999) 11.687 11.671 10.800–12.761

Subset 2 CNM-DIE 924,760, 414 8.274 (1.185) 9.484 9.566 8.274–10.168
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color image. This processing enhances the contrast of each channel individually, potentially leading to an over-
all improvement in the appearance of the color image. Thereafter, the images were normalized to [0,1] range 
for sRGB values. Then, we used the normalized hazy sRGB images as input for the dehazing algorithms and 
evaluated the quality of the result either with CM-DIE (image subset 1) or with CNM-DIE (image subset 2) by 
comparing with the reference normalized sRGB images. This experiment was also carried out with the images 
from the SHIA database  in27. The sRGB images have been enhanced using the imadjust function in Matlab only 
for visualization purposes.

Experiment 2 results
Table 2 shows the mean, median and range of values as well as the standard deviation of the CM-DIE metric 
(image subset 1) and CNM-DIE metric (image subset 2).

The metrics values tend to be higher for the sRGB images than in the previous experiment, showing that 
using optimal triplets could be a better strategy than standard sRGB dehazing. The lowest relative improvement 
in the metrics values when comparing the average values between the two experiments happens for CNM-DIE 
and image subset 1, with a relative improvement of 2.2%, while for image subset 1 and CM-DIE the relative 
improvement is 27%, and for image subset 2 the dehazing lowers CNM-DIE values by 10.94%. The median 

Figure 4.  Best case scenario (above) for the two subsets and the two metrics tested: hazy and dehazed images 
for the optimal triplet which resulted in the lowest metric value among the images in each subset. Worst case 
scenario (below): highest metric values found for each subset and metric (always with the optimal triplet). The 
third row of images shows the difference images displayed in false color.
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values tend to be slightly lower than the mean values, which means that the distribution of metric values is not 
significantly skewed. The range spanned by the metrics shows that there is a certain overlap between the quality 
distribution for experiment 1 and experiment 2: the lower part of the range of values for experiment 2 overlaps 
with the mean-to-higher range of values for experiment 1.

In Fig. 6, the best and worst case scenarios along with the difference images in false color are shown for both 
subsets.

A noticeable improvement is found in the image contrast and visibility of middle and far range objects for 
the best cases (Fig. 6 upper row). In the worst cases (Fig. 6 lower row), again most or at least half of the image 
is covered by cloudy sky, with which the dehazing algorithm can do little to improve. Even with that limitation, 
there is a certain gain for the objects placed between near and mid-distance range, and for the best case scenario 
even in the mountain profiles as well, as shown by the difference images in false color.

Experiment 3: mono-band full spectral dehazing and sRGB rendering
In this final experiment, we tested an alternative approach to dehazing that uses the full spectral image. We first 
performed the dehazing band by band with each monochrome image input for MS-CNN, then generated the 
sRGB rendering using the dehazed bands, and finally evaluated the result. Our hypothesis is that this approach 
will produce better results than the conventional sRGB dehazing shown in experiment 2.

Experiment 3 workflow
Figure 7 shows the final experiment workflow for image subset 1. The main difference with respect to Experi-
ment 2 is the band-by-band dehazing step of the hazy spectral images before the XYZ and sRGB rendering steps 
(lower row of Fig. 7). This experiment was not performed  in27, and shows a new way of performing dehazing 
for spectral images.

Experiment 3 results
Table 3 shows the average, median and range of metrics values and standard deviations obtained for each set 
and metric in this experiment.

There is a small improvement from experiment 2 in subset 1 and CM-DIE metric, but with CNM-DIE for 
image subset 1 the metric values are practically the same, with higher standard deviation in general for this 
subset. The most relevant improvement happens for image subset 2 with a relative increase in quality (descent in 

Figure 5.  Workflow for experiment 2. Upper row: haze-free image. Lower row: hazy image.CMF: CIE Color-
Matching Functions for the 2-deg standard observer. XYZ: CIE XYZ tristimulus values. The imadjust function 
from Matlab is used to enhance the contrast of grayscale/sRGB images in order to better visualize some details 
on them.

Table 2.  Mean values and standard deviation of the combined image quality metrics (second row); median 
values (third row) and range of values (fourth row) for both subsets and sRGB Dehazing.

CM-DIE image subset 1 CNM-DIE image subset 1 CNM-DIE image subset 2

Mean values (std) 0.469 (0.093) 11.050 (1.336) 9.291 (0.814)

Median 0.459 11.035 9.192

Range 0.342–0.647 9.625–13.809 7.957–10.859
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CNM-DIE values) of 9.5%. It seems that for images with a high level of dust particles present in the atmosphere 
it might be a better approach to perform dehazing band-by-band using the spectral data, but there is relatively 
little gain in using this procedure for images with some clear areas in the foreground, like those in image subset 1. 
The trends described for experiment 2 regarding the median values are also present in this experiment, although 
the median for CNM-DIE and image subset 2 is slightly higher than the mean. There is also some overlapping 
in the ranges of the three metric values for experiment 2 and experiment 3.

In Fig. 8, we show the analog of Fig. 6 for the dehazing strategy used in Experiment 3. Three among the 
six images are also present in the best and worst case scenarios for experiment 2, shown in Fig. 6. In the best 
cases, the improvement in the far distance range, for which the mountains of the Sierra Nevada range are visible 
(Fig. 8 left and center columns) is clearly noticeable, also when looking at the difference images. The worst case 
scenario corresponds to the same images shown in Fig. 6 for image subset 1, and for them the cloud cover and 
the amount of haze present in most of the image renders quite difficult the task of dehazing. For image subset 2, 
in the best case most of the image is in the near-to-mid range with less haze present, while the opposite happens 
in the worst case scenario, with an image containing much information in the mid-to-far distance range. Even 
in the worst case, we are able to see some noticeable changes in the difference images.

Figure 6.  Best case scenario (above) for the two subsets and the two metrics tested in sRGB dehazing: hazy 
and dehazed images for the optimal triplet which resulted in the lowest metric value among the images in each 
subset. Worst case scenario (below): highest metric values found for each subset and metric. The third row of 
images shows the difference images displayed in false color.
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In Fig. 9, we present some instances of the comparison between experiments 2 and 3 for images of subset 2. 
In the upper part of the figure, the contrast is noticeably improved and the color is more similar to the original 
hazy imagen for experiment 3 (i.e. the flock of birds in the sky, that are visible after dehazing, or the arm of the 
crane). For the scene in the lower part of Fig. 9, we notice improved visibility for the Alhambra and the houses 
beyond, while the details of the clouds are also more clearly defined. Again, the color is more natural and similar 
to the hazy image for experiment 3.

Conclusion
In this study, we have made two significant contributions to the field of outdoor hyperspectral image analysis. 
First, we introduce the GRANHHADA database, which, to the best of our knowledge, is the first outdoor hyper-
spectral image database featuring a combination of simulated and real hazy images. Our second contribution 
involves an exploration of dehazing methods using spectral information in both simulated and real hazy images. 
We evaluated three distinct approaches: optimal triplet band selection, simple dehazing using an sRGB rendi-
tion of the images, and mono-band spectral dehazing followed by sRGB rendering. Our findings reveal that 
the optimal triplet selection method consistently outperforms the other approaches across various scenarios.

Notably, the need for transformation between the optimal triplet and conventional RGB representation, which 
may be relevant in specific applications, does not diminish the significance of this method. In many fields, as 
outlined in Sect. 1, the color information may not be paramount.

For outdoor simulated hazy scenes (subset 1), our analysis demonstrates that optimal triplets tend to reside in 
the longer wavelengths region, with their selection influenced by the chosen metric. This observation highlights 
the necessity for efficient band reduction techniques, tailored for hyperspectral images, particularly in situations 
where dehazing is essential.

In the face of challenging worst-case scenarios, characterized by high haze densities and the presence of sus-
pended dust particles unique to the GRANHHADA database, it’s clear that the dehazing task remains complex, 
even for Deep-Learning based methods like MS-CNN19.

When dealing with real hazy images (subset 2), the benefits of optimal triplet selection are consistently more 
pronounced when compared to sRGB and mono-band plus sRGB approaches. Nevertheless, if the full spectral 

Figure 7.  Workflow for experiment 3. Upper row: haze-free image. Lower row: hazy image.CMF: CIE Color-
Matching Functions for the 2-deg standard observer. XYZ: CIE XYZ tristimulus values. The imadjust function 
from Matlab is used to enhance the contrast of grayscale/sRGB images in order to better visualize some details 
on them.

Table 3.  Mean values and standard deviation of the combined image quality metrics (second row); median 
values (third row) and range of values (fourth row) for both subsets and band-by-band dehazing previous to 
sRGB rendering.

CM-DIE image subset 1 CNM-DIE image subset 1 CNM-DIE image subset 2

Mean values (std) 0.426 (0.104) 11.084 (2.029) 8.407 (0.835)

Median 0.405 10.786 8.471

Range 0.273–0.540 8.989–14.846 6.388–9.552
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image is available, performing band-by-band dehazing prior to sRGB rendering can significantly enhance results, 
thereby underscoring the potential of hyperspectral images for dehazing applications.

Our work further underscores the value of optimal triplet searches as a preliminary step for reducing the 
number of bands in capture devices, as previously highlighted in our earlier  research26. Moreover, our results 
advocate for the use of band-by-band dehazing algorithms, even when MS-CNN has not been specifically trained 
with monochrome images. This paves the way for exploring deep learning-based methods, particularly those 
trained with spectral images featuring high densities of real haze of different  types59,60.

While we have made some progress in advancing the field of hyperspectral image dehazing, we also acknowl-
edge intrinsic limitations in the evaluation process, particularly concerning image quality metrics. To this end, 
the development of non-reference metrics tailored specifically for dehazing could be a valuable asset. Such 
metrics should ideally encompass the effects induced by haze, including local contrast reduction, chroma loss, 
and overall scene brightness increase. Their application would facilitate a more comprehensive evaluation of the 
efficacy of dehazing methods in mitigating these adverse effects.

Figure 8.  Best case scenario (above) for the two subsets and the two metrics tested in band-by-band dehazing 
and sRGB rendering: hazy and dehazed images for the optimal triplet which resulted in the lowest metric value 
among the images in each subset. Worst case scenario (below): highest metric values found for each subset and 
metric. The third row of images shows the difference images displayed in false color. 
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Data availability
The dataset generated and analysed the current study are available in our research group page in our research 
group page (Color Imaging Lab), [https:// color imagi nglab. ugr. es/ pages/ Data#__ doku_ grana da_ hyper spect ral_ 
hazy_ datab ase_ granh hada].
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