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A B S T R A C T   

This paper describes a workflow for classifying the maturity of bell peppers using hyperspectral imaging and 
machine learning. The approach involves using spectral reflectance to determine the number of maturity stages, 
followed by a classification task using the optimal bands for accurate classification. The study explores a realistic 
scenario using simulated camera responses and investigates the use of real sensors with their spectral sensitivities 
and noise. Four classifier algorithms (RBFNN, PLS-DA, SVM, and LDA) were employed to predict the maturity 
stage based on spectral reflectance. The best results were achieved with the LDA algorithm, which was used in 
the optimization process for band selection. The optimized bands in the VISNIR range (400–1000 nm) were 
found to be [783.5, 844.1, and 905.4] nm, with an accuracy of 90.67% for spectral data. For camera responses 
with intermediate-level noise, the best bands were [760, 820, and 900 nm], achieving an accuracy of 81%. 
Overall, using three bands yielded satisfactory and practical results for real-world implementation.   

1. Introduction 

Bell pepper is a widely cultivated vegetable typically measuring 6–9 
cm wide and 7–10 cm in length. It has three or four distinct hulls and a 
thick flesh (3–7 mm). The pepper can be cut with or without a stalk and 
has a glossy exterior in various colors (green, red, yellow, or orange). It 
belongs to the Capsicum genus in the Solanaceae family, which en-
compasses approximately 2300 plant species, including the California 
variety (Bosland et al., 2012). They are rich in vitamin C, provitamin A 
and carotenoids (especially in the red varieties) (Howard et al., 1994). 

Determining the quality and acceptability of bell peppers in the 
market relies on attributes such as firmness, maturity, weight, texture, 
decay incidence, and color (Weston and Barth, 1997). There is signifi-
cant interest in developing non-destructive, environmentally friendly, 
and rapid methods for quality control. These methods encompass mea-
surement of physical properties of bell peppers (Ignat et al., 2010; 
Mohebbi et al., 2012), spectroscopic measurements (Ignat et al., 2013), 
and more recently, hyperspectral imaging (Schmilovitch et al., 2014; 
Ignat et al., 2014; Paredes et al., 2019; Yuan et al., 2021; Logan et al., 
2020; Babellahi et al., 2020). Ariyo et al. (2011) utilized discriminant 
analysis and classification methods to monitor the health status of bell 

peppers based on growth parameters measured six to ten weeks after 
transplanting, such as plant height, number of leaves, and fruit count. 
Ignat et al. (2013) utilized visible and near infrared spectrometry to 
estimate bell pepper chlorophyll and carotenoid content, important in-
dicators of maturity and harvesting time. They successfully predicted 
these components using various regression algorithms, including kernel 
algorithm, partial least squares (PLSR), and support vector machine. 
Schmilovitch et al. (2014) used visible and near infrared hyperspectral 
imaging (550 nm–850 nm) to correlate with total soluble solids, total 
chlorophyll, carotenoid, and ascorbic acid content data of three bell 
pepper cultivars during a seven-week maturation period, and a similar 
strategy is found in Paredes et al. (2019). Ignat et al. (2014) used 
hyperspectral visible and infrared data along with multi-sensor data to 
predict the maturity of intact bell peppers. Logan et al. (2020) used 
visible and near infrared data to search for optimal wavelengths to 
predict the ripeness of different fruits including bell peppers. The search 
was performed with a genetic algorithm, and the prediction with con-
volutional neural networks. Babellahi et al. (2020) focused on the ability 
to differentiate between fresh and stored fruits, using ten selected 
wavelengths in the range 400–2500 nm. They also were able to detect 
chill injury and classify the fruit according to storage duration. 
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Villaseñor-Aguilar et al.2020 (Villaseñor et al., 2020) evaluated bell 
pepper maturity using an artificial vision system based on RGB images, 
employing fuzzy logic models and deep learning algorithms. Althaus 
et al. (Althaus and Blanke, 2020) assessed bell pepper freshness by a 
profilometer, luster sensor, and light reflectance spectra with satisfac-
tory results. Kasampalis et al. (2022) related the nutritional quality of 
bell peppers during harvest and subsequent storage with digital color 
imaging, chlorophyll fluorescence, and visible/near-infrared 
spectroscopy. 

In summary, several of these studies (Ignat et al., 2013, 2014; 
Schmilovitch et al., 2014; Althaus and Blanke, 2020; Kasampalis et al., 
2022), aim to correlate spectral measurements with chemical data or 
other physical magnitudes related to nutritional content or freshness of 
the peppers, while others use spectroscopic data or spectral reflectance 
in different ranges, selecting suitable wavelengths to predict the matu-
rity stage (Ignat et al., 2014; Logan et al., 2020) or for other related 
purposes (Babellahi et al., 2020), or use conventional digital imaging 
sensor responses data for evaluating ripeness (Villaseñor et al., 2020). 
This study focus on the hyperspectral imaging technique, since it has 
been proven to facilitate the detection, classification, and visualization 
of quality and safety attributes of fruits and vegetables (Pu et al., 2015). 
The practical implementation of such a prediction system to be used as 
quality control would require using a monochrome sensor coupled with 
narrowband filters. None of the previous studies have tested the effect of 
the illumination, the filter transmittances, and the monochrome sensor 
responsivity on the task of classification of peppers according to their 
maturity stage. 

In this study, the use of spectral reflectance in the visible and near 
infrared range is proposed to determine the appropriate number of 
maturity stage classes of bell peppers of three cultivars. Then, the 
identification of optimal spectral reflectance bands for achieving the 
highest classification rate, following the approach of previous authors 
(Logan et al., 2020; Babellahi et al., 2020). The additional contribution 
is that a realistic scenario was considered resembling a conveyor belt 
system where bell peppers are initially assessed after collection, as full 
reflectance hyperspectral capture is too slow for conveyor belt integra-
tion. To address this, the feasibility of using commercial filters coupled 
with a monochrome sensor was examined, considering their spectral 
transmittances, responsivity, simulated noise, for automated maturity 
assessment of bell peppers under a suitable artificial illumination light 
source. This pipeline is then intended to be incorporated into a quality 
check system acting once the peppers have been collected and before 
packaging, to prevent over-ripe fruits to be packaged and become 
spoiled during transport. The system studied improves pepper shelf-life 
assessment, ensuring better product quality for customers and proper 
harvesting by producers, ultimately boosting pepper market position 
and economic performance. 

2. Materials and methods 

2.1. Samples 

Three varieties of bell pepper (Capsicum annuum) were collected by 
HORTOFRUTÍCOLA MABE S.A.T. cooperative in five different time in-
tervals, starting from 155 DAA (Days After Anthesis). Gatherings 1–4 
were one week apart (with gathering 1 corresponding to 162 DAA), and 
gathering 5 was two weeks after gathering 4 (corresponding to 207 
DAA). The varieties collected were red (Hokkaido), orange (Denario), 
and yellow (Insignia). Each gathering included 10 peppers per variety, 
totaling 150 peppers for this study. The gathering commenced on March 
15, 2022, and the peppers were cultivated in greenhouse environments 
across various locations in the province of Almeria, Spain. After the 
gathering, some samples were preserved at 8–12 ◦C for two additional 
weeks to observe the changes in their physical features such as color and 
firmness. 

2.2. Assessment by chemical analysis 

Half of the samples were randomly chosen for the measurement of 
Chlorophyll A, Chlorophyll B, and carotenoid contents, which are 
commonly used as chemical markers to assess the maturity stage of bell 
peppers (Ignat et al., 2013, 2014; Schmilovitch et al., 2014; Paredes 
et al., 2019). Two approximately 0.7 g samples were obtained from 
different parts of each pepper and immersed in 80% ethanol before 
being frozen overnight at − 18 ◦C. The frozen tissue was then macerated 
in absolute ethanol, followed by centrifugation to separate the solid 
residue. The supernatant was filtered using glass-fiber syringe filters (13 
mm, 1 μm) (VWR, USA), and a portion was transferred to a quartz 
cuvette for optical absorbance measurement. The absorbance was 
determined at 470, 648.6, and 664.2 nm using a spectrophotometer 
(Jenway 7205 UV/Visible, USA) as described by Ignat et al. (2013). The 
contents of Chlorophyll A, Chlorophyll B, Total Chlorophyll, and ca-
rotenoids were calculated using the equations proposed by (Lich-
tenthaler, 1987): 

Ca(μg /mL)= 13.36A664.2– 5.19A648.6 (1)  

Cb(μg /mL)= 27.43A648.6– 8.12A664.2 (2)  

Ca+b(μg /mL)= 5.24A664.2+ 22.24A648.6 (3)  

Cc(μg /mL)= (1000A470– 2.13Ca– 97.64Cb) / 209 (4) 

The chemical analysis results indicate a tendency of increasing 
carotenoid levels (with a less pronounced trend in the yellow variety) 
and decreasing total Chlorophyll levels as the bell peppers mature 
(Fig. 1). This observation aligns with previous studies on this species 
(Ignat et al., 2013; Althaus and Blanke, 2020; Kasampalis et al., 2022). 
The high standard deviation among peppers within each collection 
suggests that carotenoid and chlorophyll contents can vary among 
different plants or collection sites, making it challenging to directly 
utilize these chemical measurements for classifying the maturity stage in 
our case. The phenomenon of carotenoid and chlorophyll content vari-
ability in bell peppers across diverse cultivars and collection sites con-
stitutes a well-established subject within the realm of plant biology and 
agricultural science. Multiple factors exert influence upon the chemical 
composition of bell peppers, encompassing genetic disparities among 
cultivars, environmental parameters, and agricultural methodologies. 
Notably, environmental variables, comprising temperature, light in-
tensity, soil characteristics, and water availability, are recognized as 
pivotal determinants that exert a discernible impact on the chemical 
composition of bell peppers (Wall et al., 2001; León-Chan et al., 2017). 

2.3. Hyperspectral data 

The spectral reflectance of the samples was measured using a Spec-
tronon PikaL camera (– Resonon), covering the range from 400 nm to 
1000 nm with 150 spectral bands (visible and near infrared range, 
VISNIR). The camera, equipped with 900 pixels per line, captured im-
ages of the peppers placed on a linear stage. Illumination was provided 
by four halogen lamps (Fig. 2, left). Images were taken of all four faces of 
each pepper, and five samples were extracted from each face, avoiding 
specular reflection areas (Fig. 2, center). 

Prior to every capture, a Teflon reference white (whose spectral 
reflectance is Wref(λ)) was captured (White(λ,x,y)) as well as a dark 
image (Black(λ,x,y)) in order to perform flat field correction and dark 
noise subtraction. This way, spectral reflectance images (Ref(λ,x,y)) 
were obtained from the raw images (Raw(λ,x,y)) as shown in equation 
(5). 

Ref(λ,x,y)=(Raw(λ,x,y)-Black(λ,x,y))/(White(λ,x,y)-Black(λ,x,y))⋅Wref(λ)
(5)  
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Where x and y stand for pixel column and row respectively (spatial co-
ordinates) and λ is the wavelength. 

After some outlier data were discarded, a total of 2615 sample 
spectra were used for further analysis. In Fig. 2 right, the full set of 
spectra in the VISNIR range for the yellow variety is shown. They are 
similar to the spectra shown in (Logan et al., 2020). 

2.4. Definition of the maturity stage classes 

A statistical analysis using the Kolmogorov-Smirnov test was con-
ducted on the extracted spectral reflectance data to determine signifi-
cant differences between spectra collected at different times (G1 to G5). 
The samples from G1 and G2 did not show significant differences (p =
0.28), nor did the samples from G3 and G4 (p = 0.34). However, sig-
nificant differences were observed between G2 and G3 samples (p =
1.9e-9), as well as between G4 and G5 samples (p = 0.01). Based on 
these findings, three maturity classes were defined: Class 1 (G1 + G2, 
representing early maturity), Class 2 (G3 + G4, representing medium 
maturity), and Class 3 (G5, representing advanced maturity). The data 
were labeled accordingly to create a ground truth for the maturity 
prediction classifier. The average reflectance for each maturity stage and 
pepper variety is shown in Fig. 3. Some samples in each group were 

stored at 4 ◦C for 14 days to observe the physical characteristics. Sam-
ples in G1 and G2 remained in good condition, maintaining firmness 
throughout the observation period. G3 and G4 samples started to lose 
firmness after 11–12 days of storage, while G5 samples lost firmness 
after 7 days. These results confirm the initial evaluation and classifica-
tion of the samples based on maturity. 

2.5. Classifier and optimization algorithms for band reduction 

2.5.1. Classifier algorithms 
Four classification algorithms were employed to predict the maturity 

class of the samples using the full spectral reflectance data. The algo-
rithms used were Radial Basis Function Neuronal Network (RBFNN) 
(Beheim et al., 2004), Partial Least Squares Discriminant Analysis 
(PLS-DA) (Brereton and Lloyd, 2014), Support Vector Machine (SVM) 
(Weston and Watkins, 1998), and Linear Discriminant Analysis (LDA) 
(Fisher, 1936). These algorithms were chosen based on previous studies 
on bell peppers, although not specifically for maturity stage classifica-
tion or prediction. The classification and optimization steps were per-
formed using MatlabⓇ code with functions from the Statistics and 
Machine Learning toolbox. 

For the RBFNN and LDA algorithms, no data preprocessing was 

Fig. 1. Left: carotenoid content. Right: total chlorophyll (A + B), average values as a function of the gathering number (1: 162 DAA; 2: 169 DAA; 3: 176 DAA; 4: 183 
DAA; 5:207 DAA). The error bars indicate one standard deviation. 

Fig. 2. Left: image capture setup with the illumination and the linear stage. Center: Example of camera response extraction in the VISNIR range. Right: spectral 
reflectances of the yellow variety set in the VISNIR range for all maturity stages. The mean spectral reflectance is shown in bold line. 

Fig. 3. Mean reflectance values of the samples corresponding to each of the three maturity stages or classes. Left column: Hokkaido (red variety); middle column: 
Denario (orange variety); right column: Insignia (yellow variety). 
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applied. However, for PLS-DA and SVM, z-score normalization was 
performed on the data. This normalization ensured that each spectrum 
and each band had a mean of 0 and a standard deviation of 1. The 
following equation was used for the normalization process. 

Z =(x – μ) / σ (6)  

where Z is the normalized value, X the original value, μ the mean of the 
data and σ the standard deviation. 

The selected algorithms were evaluated using two strategies: 1) 
Confusion matrices were obtained by training the algorithms with 80% 
of the data and evaluating them on the remaining 20%. 2) Cross- 
validation was performed with k-fold (k = 5) to calculate the accuracy 
of the models. 

Each classification algorithm underwent parameter optimization to 
achieve optimal results for our data. For LDA, default values were suf-
ficient, and the fitcecoc MatlabⓇ function with the Discriminant tem-
plate was used. SVM required adjusting the Box Constraint parameter to 
1000 for improved performance, compared to the default value of 1. 
RBFNN’s spread parameter was crucial for classification, and values 
between 2 and 16 yielded the best results. The newrbe function in 
MatlabⓇ was used, constructing a two-layered network with hidden 
neurons equal to the number of input vectors. PLS-DA implementation 
(Zontov et al., 2020) utilized the MatlabⓇ GUI tool, with the soft version 
proving more effective. The number of components was optimized, and 
in our case, 20 components were chosen for the best results. 

2.5.2. Band optimization algorithm 
Optimal bands for maturity class prediction were determined using 

the LDA classifier with 5-fold cross-validation accuracy as the cost 
function. The Surrogate Optimization method (surrogateopt in Mat-
labⓇ) (Gutmann, 2001), was employed to search for the best bands 
efficiently. 

This iterative algorithm starts with random points within specified 
bounds and builds a surrogate model using radial basis function (RBF) 
interpolation. It then generates additional random points, evaluates a 
merit function based on the surrogate model and distances to previously 
evaluated points, and selects the best candidate point for evaluation of 
the original objective function. The process continues until a stopping 
criterion is met, such as reaching a maximum number of iterations. 

In our case, the points evaluated correspond to different groups of 
one, two, or three bands within the measured spectrum. The algorithm 
aims to find the combination that minimizes the LDA classification error 
or maximizes accuracy. 

To ensure robust results, the optimization was run 100 times, and the 
bands that appeared most frequently in the 100 runs were selected based 
on a histogram analysis. 

By setting a maximum number of iterations, the execution time 
remained reasonable while still obtaining reliable results. 

2.6. Camera capture simulation 

It would be expected that the best bands identified using the full 
range of spectra may not be the best in real-life situations. This is 
because the actual capturing system used would be a simplified version, 
not a hyperspectral camera. Instead, it would consist of up to three 
monochrome sensors with narrowband filters attached to the camera 
lens. These different capture devices influence the input information for 
the classifier. Consequently, the optimization process to select the 
optimal spectral bands was re-run. This time, simulated camera re-
sponses were used based on the spectral reflectance multiplied by a real 
light source (color signal), the responsivity curve of a monochrome 
sensor, and a set of candidate filters. The camera response model in-
cludes both the illumination and sensor responsivity functions, specif-
ically for a Silicon sensor. Gaussian distribution noise was also added, 
representing dark signal noise, at three levels: 1%, 3%, and 5% of the 

peak response (equivalent to approximately 40, 30, and 26 dB SNR). The 
illumination spectral power distribution from Thorlabs (Thorlabs), the 
spectral responsivity of the silicon sensor (from a Retiga 1300 Mono-
chrome CCD camera), and the spectral transmittance of all candidate 
interference filters (a Vision Light Tech set) used in the optimization are 
shown in Fig. 4. It is assumed that the camera can provide RAW data 
because the sensor responses are linear with the received irradiance for 
most camera response values, given that the scene is properly exposed. 

The camera response equation is: 

ρk,m =
∑N

j=1
EjRm,jFk,jSj + σk,m (7)  

Where Ej is the SPD of the illumination shown in Fig. 3 left, Rm,j is the 
spectral reflectance of the sample number m in band j, Fk,j is the filter 
transmittance of filter number k in band j, Sj is the spectral responsivity 
function of the sensor in band j, and σk,m is the added noise. By using this 
simplified model, the simulation of camera array responses closely ap-
proximates the response values of a real capture device used for on-site 
maturity stage prediction, compared to using spectral reflectance values 
alone. As mentioned earlier, it is not feasible to use a hyperspectral 
camera to capture and process the full spectrum in real-time applications 
involving a conveyor belt. Once the camera responses are obtained, the 
optimization process employs the Surrogated method and DA classifier 
to predict maturity classes using these camera responses. The results can 
then be analyzed to determine if the performance would be satisfactory 
in a more realistic scenario. 

2.7. Workflow of the proposed pipeline for maturity stage classification 

Fig. 5 illustrates a simplified workflow for designing an automatic 
classifier to determine the maturity stage of bell peppers. The process 
begins with capturing hyperspectral camera data, followed by defining 
the maturity stages based on the captured spectral information. Next, 
camera responses are calculated for each sample, candidate filter, 
sensor, and level of noise. Finally, a surrogate optimization algorithm is 
employed, using a DA-based classifier accuracy as the cost function, to 
identify the optimal spectral bands. Although bell peppers pose chal-
lenges in maturity stage prediction, a previous study (Logan et al., 2020) 
examines ripeness assessment within its context but also illustrates the 
potential applicability of the same workflow to a wide range of disparate 
species, including but not limited to potatoes, bananas, and peppers. 
This suggests that our proposed process can be adapted with minor 
adjustments for assessing the maturity stage of other species as well (see 
Fig. 6). 

3. Results and discussion 

3.1. Spectral reflectance data 

3.1.1. Selection of the best classifier algorithm 
As described in section 2.5.1, four classifier algorithms (RBFNN, PLS- 

DA, SVM, and DA) were utilized to generate initial results for predicting 
the maturity stage using the complete spectral reflectance data from the 
samples. This approach is anticipated to produce favorable outcomes 
based on previous studies (Ignat et al., 2013, 2014), but it does not 
reflect the practical aspects of automatically assessing the maturity of 
bell peppers after collection. Table 1 displays the overall accuracy of 
each algorithm for both spectral ranges, while Table 2 exhibits the 
confusion matrices specifically for cases where the total accuracy was 
less than 100%. 

The RBFNN algorithm delivers the best overall results; however, 
considering factors such as parameterization, training process, and data 
preprocessing requirements, the LDA algorithm emerged as the prefer-
able choice. This algorithm will be employed as the classifier in the cost 
function for the band selection optimization process (refer to section 
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3.2). It is worth noting that utilizing the full spectrum leads to excellent 
performance across all algorithms in the classification task, as antici-
pated. The accuracy obtained is similar or superior to the results of other 
studies using classification algorithms (Babellahi et al., 2020; Kasam-
palis et al., 2022), but a more detailed direct comparison is not possible 
due to differing input data or methodologies. 

The data presented in Table 2, which includes the confusion 
matrices, confirms the accuracy of the tested classifiers. The data was 
split into 80% training and 20% testing sets to compute these matrices. 
Observing the confusion matrices, one can note that all errors occur 
between neighboring classes, predominantly classes 2 and 3. Therefore, 
the classifiers never mix up bell peppers that are highly mature with 
those that are very fresh, or vice versa. 

3.1.2. Optimal band selection 
In section 2.5.2, the LDA classifier accuracy served as the cost 

function for an optimization process that aimed to select the optimal 
combination of two and three bands. This optimization significantly 
reduces the computation time since there are typically millions of 
possible combinations when working with multiple bands. Surrogate 
optimization has been shown to converge to global minima when the 
cost function is suitably smooth, providing an additional advantage to 

Fig. 4. Left: illumination SPD and sensors spectral responsivities (Retiga 1300 Monochrome camera for VISNIR range) Right: Vision Light Tech BP695 filters 
transmittances for the candidate filters used for the band selection optimization in the VISNIR range. 

Fig. 5. Workflow of the complete proposed pipeline for maturity stage detection.  

Fig. 6. Histograms of selected bands for the optimal two bands after 100 runs (left). Mean spectral reflectance of the three maturity classes with the two optimal 
bands highlighted (right). 

Table 1 
Total accuracy for the full spectra reflectance dataset 
maturity stage prediction.  

Classifier algorithm Accuracy 

RBFNN 99.81% 
PLS-DA 97.00% 
SVM 99.69% 
LDA 99.74%  
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this algorithm. However, in this case, the cost function was not evalu-
ated with small enough steps to ensure its smoothness. Nonetheless, the 
achieved performance is satisfactory. 

As a preliminary comparison, the maturity stage detection classifier 
was also run using the three channels of sRGB images of the samples, 
obtained from XYZ values using the standard transformation (Ohta and 
Robertson, 2006), as well as in the L*a*b* color space (CIE, 2007), 
computed from the reflectances under the D65 standard illumination. In 
the sRGB space, when separating the three varieties and conducting 
three independent classification processes, the highest mean accuracy 
achieved was 56.57%. When not separating by variety, the classifier 
achieved an accuracy of 41.57%, only marginally better than chance for 
a three-class classifier. In the L*a*b* space, when separating by variety, 
the average accuracy obtained was 72.0%, while the accuracy for the 
entire dataset was 60.19%. These classification results were based on the 
visible and near-infrared (VISNIR) spectral range, cropped at 700 nm 
due to the usage of color spaces. 

Additionally, the performance was evaluated using data from indi-
vidual bands. The best single band was found to be 901 nm, with an 
accuracy of 78.24%. Consequently, further improvement was antici-
pated by utilizing the optimization algorithm to determine the optimal 
combination of two and three bands. 

3.1.2.1. Optimal two bands. As explained in section 2.5.2, the Surrogate 
optimization process was executed 100 times. After these runs, a his-
togram was created to display the frequency of each band being selected 
across the 100 iterations. The accuracy of the potential combinations 
involving the most frequently chosen bands was compared to determine 
the optimal pair. The pair [783.5, 826.7] nm yielded the best results, 
achieving a total accuracy of 87.38%. 

As anticipated, using the optimal pair of bands resulted in higher 
accuracy compared to using a single band. Interestingly, the selected 
spectral locus for the optimal band pair is not in close proximity to the 
best individual band. This outcome is not surprising because when 
searching for an optimal pair of bands, the primary concern is the 
distinction in reflectance values between the two bands across different 
classes. 

3.1.2.2. Optimal three bands. During the optimization process for 
selecting the best triplet of bands, the most favorable results were 

obtained with the triplet [783.5, 844.1, and 905.4] nm, achieving an 
accuracy of 90.67%. The use of three bands yields satisfactory outcomes 
and remains relatively feasible for implementation in real-life scenarios. 

Fig. 7 displays the histograms and mean spectra with the optimal 
bands highlighted. 

The optimal pair and optimal triplet share a common band (783.5 
nm), which appeared most frequently in the search for the optimal pair. 
The closest band to this common member is not significantly distant 
from the second band in the optimal pair, but the third band is notice-
ably further apart. As shown in Fig. 7 (left), the optimal bands are 
positioned in a range where the separation between mean spectra cor-
responding to different maturity stages is more pronounced. 

The accuracies achieved by the optimal triplets surpass those of the 
optimal pair, nearly approaching the values obtained with the full 
spectral data. 

Implementing a real capture device using bands with peaks located 
similarly to the optimal bands would require incorporating one addi-
tional sensor compared to the two-band system. However, the 
improvement in accuracy might not justify the additional expense in this 
case. It is very difficult to compare our results with previous studies’ 
data, because they either deal with correlation with chemical-physical 
measurements, or else they use a different number of bands or spec-
tral range. Nevertheless, the 783.5 nm band found is within one of the 
sub-ranges highlighted by Kasamplis et al. (Kasampalis et al., 2022) 
(383–469, 555–595, 718–794, 940–1058,1402–1509, 1838–1930, 
2511–2519 nm) as suitable for correlation with colorimetric data and 
use in classification of stored fruits maturity. 

3.2. Simulated camera responses 

3.2.1. Optimal band selection 

3.2.1.1. Optimal single band. In this case, the quality surveillance sys-
tem implementation involves only one sensor with a filter. The results 
can be found in Table 3 (rows 2–4). Although the optimal bands differ 
from those obtained for the full spectral reflectance scenario (section 
3.1), the peak positions and accuracies are relatively close. The camera 
response simulation considers three additional factors that were not 
present in the spectral reflectance optimization: the illumination light 
source, interference filters, and noisy camera responses. However, 

Table 2 
Confusion matrices for those cases in which the accuracy did not reach 100%. 
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despite these factors, the best band consistently tends to be around 900 
nm. The presence of noise also affects the peak position of the optimal 
bands and the maximum accuracy achieved, as depicted in Table 3 (rows 
2–4). As expected, the accuracy decreases as the noise level increases. 
Fig. 8 displays histograms for the optimization of a single band using 
camera responses with 3% noise (an intermediate noise level). 

3.2.1.2. Optimal pairs and optimal triplets. The optimal band pairs and 
triplets (refer to Table 3, rows 5–7 for pairs, 8–10 for triplets) exhibit a 
similar pattern to the single band optimization. The selected bands are 
influenced by the level of noise, affecting both the peak position and the 
maximum accuracy achieved. Moreover, the peak positions differ from 
those obtained in the full spectral reflectance optimization, although 
they are relatively close for the 1% noise level. This underscores the 
significance of using accurate simulations as input for the optimization 
algorithms. 

The accuracies obtained with the peak positions found in section 3.1 
using spectral reflectance data, but with simulated camera responses, 
are lower compared to the optimal results obtained in section 3.2. This is 
due to the fact that the peak positions derived from spectral reflectance 
data are no longer optimal when a real device, illumination, and filters 
are employed for data collection. 

Fig. 9 illustrates the histograms and optimal peak positions found for 
the intermediate noise simulation. Histograms of the selected optimal 
triplets of bands after 100 runs with intermediate noise level camera 
responses show that the three best filters are located at 900, 880 and 
760 nm (Fig. 9, left). When only two filters were used, the best locations 
were around 880 and 760 nm (Fig. 9, right). As expected, the most 
successful ones are the ones located in the longer wavelengths of the 
studied spectral range. 

As it was done in section 3.1.2, the RGB camera responses were 
simulated with the same illumination and the three levels of noise used 
in the camera simulations presented in this section. The simulated 
camera is a scientific RGB CCD camera (model Retiga RGB), and the 

Fig. 7. Histograms of selected bands for the optimal triplets after 100 runs (left). Mean spectral reflectance of the three maturity classes with the three optimal bands 
highlighted (right). 

Table 3 
Optimal bands found for each noise level. N1 = single band. N2 
= optimal pair. N3 = optimal triplet.   

VISNIR 

N1 1% noise [920] (77.97 %) 
N1 3% noise [900] (76.83 %) 
N1 5% noise [880] (75.91 %) 
N2 1% noise [780,880] (83.79%) 
N2 3% noise [760,880] (80.23%) 
N2 5% noise [880,920] (76.79%) 
N3 1% noise [440, 780,880] (84.05%) 
N3 3% noise [760, 880,900] (81.15%) 
N3 5% noise [760, 880,920] (78.32%)  

Fig. 8. Histograms of the selected single band after 100 runs with intermediate 
noise level camera responses. 

Fig. 9. Histograms of the selected optimal triplets of bands after 100 runs with intermediate noise level camera responses.  
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results range from 51.6% of accuracy for the noiseless case down to 
46.0% for a 5% noise, using different classification models. 

4. Conclusions 

In this study, a complete pipeline that includes simulations of camera 
responses for the first time is presented to predict the maturity stage of 
bell peppers from different varieties. This is a significant issue for hor-
ticultural companies as they depend on timely harvesting to avoid losses 
caused by over-ripe peppers that are unsuitable for sale by the time they 
reach distributors or final sellers. The pipeline begins with capturing 
spectral reflectance data in the VISNIR range, which can also be ob-
tained using area-based measurement devices. These data are used to 
define three maturity stages corresponding to different weeks after 
anthesis, starting from Day 162, which are validated by chemical mea-
surements (chlorophyll and carotenoids content). 

It is not possible to use the full reflectance spectrum in the quality 
assessment system, because of economical and capture time manage-
ment reasons. Then, it is necessary to reduce the amount of information 
for the maturity stage prediction algorithm by finding optimal two or 
three bands that can achieve acceptable results in accuracy. On the other 
hand, none of the capture devices that could be used in this system 
directly provides spectral reflectance data. This would not be problem-
atic if the peak positions of the optimal bands were the same for spectral 
reflectance data or the device camera responses. However, as it has been 
proven in this study, this is not the case. The results indicate that the 
optimal bands change when using camera responses as input data for the 
classifier. This suggests the crucial importance of using camera re-
sponses instead of reflectance data, which has not been explored in 
previous studies to our knowledge. The simulations consider noise, and 
as expected, the maximum accuracy achieved is highly dependent on the 
noise level of the capture system. The maximum modeled noise level in 
our study was 26 dB SNR. In practice, most current devices will have a 
SNR closer to 50 dB in average exposure and ISO settings. Under the 
maximum noise level, the accuracy reaches a minimum slightly below 
80% for three filters. 

Using this proposed pipeline, the number of filters can be adjusted 
based on the company’s budget. They can choose simpler or more 
complex camera devices. The performance was examined with one to 
three filters, and the best results were obtained with three filters, 
although the difference between two and three filters is minimal. It 
would be advisable for any company willing to implement a maturity 
stage detection prediction to use their own illumination, capture device 
and filters to find the optimal spectral positions for their particular 
conditions. The peak positions provided in this study are strictly valid 
for the data used to obtain the simulated camera responses. 

Additional limitations of this study are the sampling size (50 units 
per cultivar) which could partially limit the applicability of the findings; 
and the non-inclusion of noise impact reduction techniques in the 
camera responses simulations potentially has led to sub-optimal results 
in the 3% and 5% noise levels studied, and lack of real sensor responses 
data as input for the classifiers. 

The outlined pipeline (excluding specific results shown) can be 
applied to any horticultural species that exhibits changes in spectral 
reflectance or fluorescence spectra depending on the maturity stage, 
although further effort could be needed to validate the method with field 
data from fruit packaging and distribution plants. 
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