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a b s t r a c t 

Hyperspectral imaging has recently consolidated as a useful technique for pigment mapping and iden- 

tification, although it is commonly supported by additional non-invasive analytical methods. Since it is 

relatively rare to find pure pigments in aged paintings, spectral unmixing can be helpful in facilitating 

pigment identification if suitable mixing models and endmember extraction procedures are chosen. In 

this study, a subtractive mixing model is assumed, and two approaches are compared for endmember 

extraction: one based on a linear mixture model, and the other, nonlinear and Deep-Learning based. Two 

spectral hyperspaces are used: the spectral reflectance (R hyperspace) and the -log(R) hyperspace, for 

which the subtractive model becomes additive. The performance of unmixing is evaluated by the similar- 

ity of the estimated reflectance to the measured data, and pigment identification accuracy. Two spectral 

ranges (400 to 10 0 0 nm and 900 to 1700 nm) and two objects (a laboratory sample and an aged painting, 

both on copper) are tested. The main conclusion is that unmixing in the -log(R) hyperspace with a linear 

mixing model is better than for the non-linear model in R hyperspace, and that pigment identification is 

generally better in R hyperspace, improving by merging the results in both spectral ranges. 

© 2023 The Authors. Published by Elsevier Masson SAS on behalf of Consiglio Nazionale delle Ricerche 

(CNR). 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The conservation of cultural heritage is crucial to ensure its 

ontinued existence and value for future generations. In this con- 

ext, the study of paintings is of great importance for their preser- 

ation and restoration [1–4] . 

For this purpose, the use of non-invasive techniques is generally 

referred [ 2–4 ]. Spectral imaging techniques [ 5 ] allow both identi- 

cation and mapping of pigments, which is used to understand the 

echnique of the artist, the evolution of painted surfaces over time, 

o decide on the conservation strategies, and to detect restorations 

r forgeries [ 6 , 7 ]. 
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Hyperspectral devices can measure the spectral reflectance 

f objects across different ranges: from UV (between 330 and 

80 nm) through visible and near infrared (VNIR, up to 10 0 0 nm) 

o short-wavelength infrared (SWIR, usually between 900 and 

500 nm). In the context of art conservation, different materials 

xhibit unique features within these ranges: varnishes have inter- 

sting properties in the UV [ 8 ], while pentimenti and underdraw- 

ngs are detected in the SWIR [ 9 ], and pigments have distinctive 

eatures in the VNIR range [ 10 ]. In addition, hyperspectral imag- 

ng can detect and separate the components of pigment mixtures 

spectral unmixing). 

In spectral unmixing, a mixed spectrum is decomposed into 

heir constituent spectra, or endmembers (EMs) [ 11 ], and their rel- 

tive concentrations in the mixture are estimated. EMs represent 

he pure materials used to produce the mixtures, while the con- 

entrations represent the proportion of each EM present in every 
Nazionale delle Ricerche (CNR). This is an open access article under the CC 
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ixel of the image. Unmixing is then divided into two steps: EM 

xtraction and concentration estimation. 

The unmixing process is based upon mixing models that de- 

cribe the physical processes that occur when different pigments 

re mixed. They can be classified as linear or non-linear. In linear 

odels, the mixed spectrum is obtained from a linear combination 

f EMs weighted by the concentrations. It is commonly used in re- 

ote sensing [ 12–14 ] and it is assumed as an acceptable approxi- 

ation in many real scenarios. Its assets are physical interpretabil- 

ty, computational tractability, and ease of implementation [ 15 , 16 ]. 

t has been used in the field of cultural heritage with promising 

esults [ 17 , 18 ]. 

Nevertheless, when pigments are mixed, the individual compo- 

ents are not discernible with imaging technologies [ 19 ]. There- 

ore, these mixtures are better characterized by a non-linear model 

 20 , 21 ]. For instance, the Kubelka–Munk model describes the rela- 

ionship between the absorption and scattering coefficients of in- 

ident light in highly light-scattering materials, requiring informa- 

ion about the optical properties of the materials studied [ 22 ]. It 

as been used in the cultural heritage domain as a proof of con- 

ept [ 23 ], but it is not extended due to memory requirements and

omputation times [ 6 ]. In remote sensing, non-linear unmixing is 

erformed by parametric extensions of the linear model address- 

ng the spectral variability found in the set of EM across different 

ixels [ 24 ] or considering different combinations within the set of 

M [ 25 ]. These approaches do not incorporate the physical princi- 

les that underlie the Kubelka–Munk model. Recently, a generative 

eep-Learning based model (DeepGun) was introduced for unsu- 

ervised unmixing [ 26 ] using low-dimensional representations of 

Ms in the latent space of the generative model. The network is 

e-trained for each scene and provides a set of EM for each pixel. 

his model performs better than the parametric non-linear exten- 

ions of the linear model, and it is not computationally expensive 

f subsampling techniques reduce the number of pixels in the spec- 

ral image. 

Many studies have focused on obtaining robust, accurate and 

ractable unmixing algorithms [ 11 ]. Grillini et al. [ 17 ] explored var-

ous mixing models, finding that the subtractive model outper- 

ormed others. They tested the LIP (Logarithmic Image Process- 

ng) additive and LIP subtractive models but, to our knowledge, 

he simplest way to transform a subtractive into an additive model 

taking the -log of the spectral reflectance data) has not yet been 

xplored. This transformation can be especially interesting if the 

M extraction models used are linear, like NFINDR [ 27 ] or Pixel 

urity Index (PPI) [ 11 ]. 

After selecting the mixture model and performing EM extrac- 

ion, the next step is pigment identification. This is usually done 

y linking each EM to a pigment within a reference library by 

sing different metrics [ 28 ]. Ideally, the reference library should 

nclude a wide range of common pigments applied on a suit- 

ble ground layer, since some pigments become transparent in the 

ear-infrared range [ 29 ]. Finding pure pigments in artworks is usu- 

lly challenging, particularly when they undergo aging [ 21 , 30 , 31 ],

eathering [ 32 ] or restoration processes [ 33 ], which makes the 

se of unmixing techniques especially appropriate. Also, the use 

f binders and varnishes can alter the spectral signature of a given 

igment [ 34 ]. 

Several approaches have been proposed for spectral unmixing 

nd pigment identification, like using the first and second deriva- 

ive of the spectra [ 31 , 35 , 36 ], clustering [ 16 ], pattern-recognition

lgorithms [ 37 ], Neural Networks, and Deep Learning [ 6,23 , 38–41 ].

he ENVI spectral hourglass wizard has also been used [ 35 , 42 ], but

t is slow and not fully automatic [ 29 ]. Achieving effective spectral 

nmixing still remains a challenging task. 

Most studies use the VNIR range to perform spectral 

nmixing, pigment mapping and/or pigment identification 
291 
 7 , 17 , 18 , 23 , 29 , 31 , 35 ]. Some have used the SWIR range to per-

orm pigment mapping [ 36 , 42 , 43 ], but not unmixing. 

. Research aim 

In this study, a subtractive mixing model was used, which 

ransforms into a linear mixing model in the -log(R) hyperspace. 

ur hypothesis is that linear EM extraction algorithms will ben- 

fit from the -log(R) hyperspace. The research question is if they 

an outperform non-linear models in R hyperspace. To answer this 

uestion, three EM extraction models were tested in R hyperspace. 

hen, two of them (linear mixing model-based algorithm and man- 

al extraction) were tested in the -log(R) hyperspace. Apart from 

howcasing the success of simple solutions for challenging tasks, 

nmixing results in two spectral ranges and two different hy- 

erspaces are analyzed, and the assets and drawbacks of each 

ethod/hyperspace/range are discussed. 

. Material and methods 

.1. Samples 

Two main objects have been used: an auxiliary (reference) cop- 

er plate from which a checkerboard image was extracted, and the 

ainting on copper with the inscription "Boceto di Pablo Veronese". 

hese objects and the information extracted from them are de- 

cribed in the next two subsections. 

.1.1. Reference copper plate 

The copper reference plate and the checkerboard image with 

eference pigments are shown in Fig. 1 . The preparation used is 

n accordance with documented period techniques from the XVIth 

entury [ 44–47 ]. The materials are preparation layers and pigments 

ound in the painting [ 48 ]. The pigments (Kremer Pigmente GmBH) 

ere bound with linseed oil and applied with a brush. 

The unpolished copper plate (1 mm thickness) was cleaned 

ith calcium carbonate and vinegar, and rubbed with ground gar- 

ic. Then, a layer of CaSO 4 powder bound with linseed oil was ap- 

lied, and a preparation layer (P1) of Bone black (BB) mixed with 

ead Earth (REP) and Lead White (LW) bound with linseed oil. 

hen, the pigments and mixtures are deposited on the prepared 

urface. There are seven pure pigments: LW, Naples Yellow (NY), 

B, Cinnabar (CN), Lapislazuli (LL), Azurite (AZ) and REP. Three 

ore patches with mixtures are added: LL + LW, CN + LW, and the 

1 mixture. Ten 32 ×32 pixel areas were extracted from the spec- 

ral image of the plate to build the reference checkerboard image 

hown in Fig. 1 (bottom). 

.1.2. Painting on copper 

The copper plate was prepared specifically for a pigment identi- 

cation test of a painting on copper with the inscription "Boceto di 

ablo Veronese", a Maternity containing the Virgin, St. Joseph and 

esus. This painting was studied using X-Ray Fluorescence (XRF) 

nd X-Ray Diffraction (XRD) techniques [ 48 ], concluding that it 

ontained five pigments: LW, BB, LL, NY and CN. 

The dimensions of the painting are 13.5 × 17.5 cm, and it 

as recently been restored. In the restoration process, the chro- 

atic reintegration was made with Maimeri pigments ochre, nat- 

ral earth, toasted ochre, Naples yellow (Lead antimonium), Zinc 

hite, Lapislazuli, and Cadmium Red from Windsor Newton. A 

ew layer of varnish was applied (Lefranc-Bougeois satined with 

V protection). An RGB image obtained with three spectral bands 

 R = 605 nm, G = 535 nm and B = 430 nm) is shown in Fig. 2 ,

ith several 3 × 3 pixels areas marked in bright yellow, which 

ere used to build the manual extraction (MEx) EM library as ex- 

lained in Section 3.3.2 . 



E.M. Valero, M.A. Martínez-Domingo, A.B. López-Baldomero et al. Journal of Cultural Heritage 64 (2023) 290–300 

Fig. 1. (Top) Reference copper plate. Reference checker areas extracted are highlighted with red squares. (Bottom) Reference checkerboard image containing areas 1–10 (for 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

Fig. 2. Restored painting used in this study, with the 3 × 3 pixels areas used for 

manual EM extraction marked in bright yellow. 
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.2. Spectral image capture and reference library 

We used two cameras from Resonon Ltd. coupled to a linear 

tage to capture the reference copper plate and the painting. The 

rst (Pika L) covers the spectral range from 380 to 1080 nm (VNIR 

ange). The second (Pika IR + ) covers from 888 to 1732 nm (SWIR 

ange). We cropped the extremes of the range, obtaining finally 121 

ands in VNIR and 161 bands in SWIR. The sampling interval was 

 nm for both ranges. 

After capturing the reference plate, a reference library of eight 

pectra for pigment identification (REFL from now on) was built 

sing the average reflectance of 30 ×30 pixels areas within the 

atches labelled as 1–7 and 10 in Fig. 1 top. The areas used in

EFL were different from those in the reference checkerboard im- 

ge shown in Fig. 1 bottom. All image processing and unmixing 

odelling has been performed using Matlab® software. 

In Fig. 3 , the spectral reflectances from the REFL in both VNIR 

nd SWIR ranges are shown. The spectra differ both in shape and 

cale. 

.3. Unmixing methods 

The process of unmixing often takes two steps: EM extraction 

 Section 3.3.2 ) and concentration estimation ( Section 3.3.1 ). 

.3.1. Concentration vector estimation and reflectance hyperspaces 

Two mixing models have been used depending on the hyper- 

pace. In the R hyperspace, the subtractive model [ 49 ] was used. 

he spectra of i EMs are multiplied consecutively, elevated to the 
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Fig. 3. (Left) REFL spectra in the VNIR range. (Right) REFL spectra in the SWIR range. 
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ower of the concentrations ( Eq. (1) ). 

 = 

q ∏ 

i =1 

ραi 

i 
(1) 

here, Y is the reflectance of the mixture, q is the number of can-

idate EMs, ρi is the reflectance of the i th EM, and αi its concen- 

ration. 

Some blind EM estimation algorithms, like NFINDR [ 27 ] and 

IPPI (Fast Iterative Pixel Purity Index) [ 50 ], are based on a lin-

ar model. This fact prompted the idea of introducing the -log(R) 

yperspace for performing unmixing. In -log(R) hyperspace, the re- 

ectance of a subtractive mixture transforms into a linear combi- 

ation of EMs, as shown in Eq. (2) [ 51 ]. 

 = 

q ∑ 

i =1 

αi ρi (2) 

The goal of spectral unmixing is retrieving the vector of concen- 

rations ( C = ( α1 , α2 , . . . αq ) ) from the reflectance of the mixture 

 Y ) and the library of candidate EMs ( E = ( ρ1 , ρ2 , . . . ρiq ) ). For this,

 constrained optimization method is used. In this study, the fmin- 

on function with the interior point algorithm [ 52 ] implemented in 

atlab® was used. The constraints are non-negativity ( αi > 0 , ∀ i ), 

nd sum-to-one ( 
q ∑ 

i =1 

αi = 1 ). 

For the cost function, usually spectral metrics are used, such as 

ean Square Error (MSE [ 17 ]) or the complement of the Goodness- 

f-Fit coefficient (cGFC [ 53 ]), related to the Spectral Angle Mapper 

etric (SAM). MSE is influenced by offset differences, and cGFC 

nly accounts for shape differences. A perf ect match would have 

ero MSE and cGFC values. Our cost function (M) merges both to- 

ether ( Eq. (3) ). 

 = cGF C + β · MSE (3) 

β is a scaling parameter to balance the contribution of both 

ub-metrics to the final combined metric. In a preliminary experi- 

ent, the optimal value for β parameter to ensure equal contribu- 

ion of both metrics was found to be β = 1.0936. 

Summarizing, both R and -log(R) hyperspaces, each with its un- 

ixing model (subtractive and additive, respectively), are used for 

he checkerboard image with different EM libraries in VNIR and 

WIR ranges. The best performing method according to the criteria 

xplained in Section 3.5 is selected for analyzing the painting on 

opper. 
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.3.2. EM extraction 

EMs can be obtained by blind separation using different algo- 

ithms, like Pixel Purity Index (PPI [ 54 , 55 ]), or Fast Iterative PPI

FIPPI [ 50 ]) and NFINDR [ 27 ]. The first two use a heuristic ap-

roach. NFINDR is geometry-based, searching for members of a 

implex hyperspace that can cover the input data [ 56 ]. NFINDR and 

PI assume the presence of at least one pure pixel per EM in the 

ata [ 11 ]. The NFINDR and DeepGun [ 26 ] methods have been se-

ected for this study as representative instances of automatic EM 

xtraction methods with different design strategies. The Matlab®

ibraries of ENVI integrated package for NFINDR, and the code pro- 

ided by the authors of DeepGun [ 57 ] was used with the default 

arameters adapted to the number of extracted EM. For DeepGun, 

he extraction was performed only in (R) hyperspace, because the 

eepGun algorithm is non-linear in R hyperspace. 

Other possibility is to extract the library directly from the 

ainting, out of representative areas including mixed pigments 

Manual Extraction or MEx method) [ 35 ]. Five 3 × 3 pixel repre- 

entative areas (shown in Fig. 2 ) of black, blue, red, white, and yel- 

owish colors were extracted from the image of the painting. The 

pectra were averaged to build the MEx_p library. The MEx_p li- 

rary is very likely constituted by mixtures and not pure EMs, but 

ur hypothesis is that this library will provide more accurate con- 

entration estimations since it is obtained directly from the paint- 

ng. In any case, the MEx_p EMs will be used for pigment identifi- 

ation using the REFL spectra shown in Fig. 3 as reference. 

Summarizing, we have seven libraries in R hyperspace for each 

pectral range. Four of them are extracted from the copper refer- 

nce board: REFL, which will only be used for pigment identifi- 

ation, and other three (with 7 EM), which will be used for un- 

ixing: the NFINDR library (NFDL), the DeepGun library (DeGu), 

nd the Manual Extraction library (MEx), which includes the same 

ure pigments as REFL but extracted from different areas. The re- 

aining three libraries (with 5 EM) are extracted from the paint- 

ng spectral image: NFDL_p, DeGu_p and MEx_p. The goal is not to 

nd the best extraction method in absolute terms, but to choose 

hree representative instances of extraction methods to showcase 

he proposed methodology. 

In -log(R) hyperspace, for each spectral range we have the two 

FINDR libraries with 7 and 5 EMs, and the two M_Ex libraries for 

oncentration estimation. 

.4. Pigment identification 

The method consists of two parts: the first, computation of a 

ombined distance metric between each pair of spectra from the 
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Fig. 4. Workflow of the steps used in the different phases of this study. 
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andidate library and REFL. The metric for the VNIR spectra is 

hown in Eq. (4) : 

 Id = cGF C + 0 . 5 M SE + 0 . 02�E 00 (4)

The coefficients are obtained assuming the following tolerances 

or the three components of the metric: 0.01 for cGFC, 0.02 for 

SE and 0.5 for �E 00 . They ensure that all the factors would con-

ribute equally to the metric value in an acceptable reflectance 

atch. The tolerance values are based on experience and corre- 

pond with tolerances found in the literature for spectral estima- 

ion [ 53 ]. The metric contains a color difference term because color 

an be relevant for pigment identification, while both scale and 

hape differences in spectra are also accounted for. The combined 

etric in the SWIR range contains only the two first factors. The 

ower the MId value, the higher the similarity between the com- 

ared spectra. 

The second part is the label assignment: the REFL label corre- 

ponding to the pigment with the minimum metric value is as- 

igned to each EM. 

Finally, the hit rate of the pigment identification process is cal- 

ulated as the percentage of correctly identified pigments. 

.5. Evaluation of results 

The evaluation of the results obtained is based on three factors: 

a) Spectral reconstruction: the similarity between estimated 

spectra and the original spectra, assessed separately by the 

three metrics that form MId ( Eq. (4) ). 

b) Visual assessment: using concentration or presence maps. 

The data shown in Ref. [ 48 ] will be used to determine if the

maps are plausible for the painting. 

c) Hit rate: from pigment identification. 

Fig. 4 shows the workflow of the methods to clarify the proce- 

ures described in the previous subsections. 

. Results and discussion 

.1. Copper reference plate 

In this section, a summary of the EM extraction and unmixing 

esults for the spectral data of the checker reference image ( Fig. 1 

ottom) is shown. Extended results are presented in the supple- 

entary material for briefness. 

.1.1. Unmixing results 

.1.1.1. Spectral reconstruction quality. Regarding R hyperspace, the 

est results in terms of cGFC, RMSE and �E values are obtained 
00 

294 
ith the MEx library (see Supplementary Material for numerical 

esults). The second-best corresponds globally to NFDL, which is 

lose to DeGu in most spectral metrics. In -log(R) hyperspace, the 

est results belong to NFDL in all metrics (VNIR range), and in 

GFC in the SWIR range. In general, the -log(R) transformation is 

eneficial for the NFDL in both ranges, which points to the impor- 

ance of ensuring correspondence between the mixing models in 

M extraction and concentration estimation. 

Comparing both spectral ranges, the estimation of the image re- 

ectances is more accurate in the SWIR range. This is expected be- 

ause the SWIR reflectances tend to be flatter and with less scale 

hanges than the VNIR reflectances. 

.1.1.2. Concentration and presence maps. The concentration maps 

how, in grayscale, the concentration of the endmembers for each 

ixel of the checkerboard reference image, ranging between 0 

black) and 1 (white). In Fig. 5 , the concentration maps corre- 

ponding to the three libraries tested in the VNIR range and R hy- 

erspace are shown, along with the labeled checkerboard reference 

mage. For NFDL and DeepGun, the EMs are not directly mapped 

nto pigments, as it happens for the MEx library. But sometimes 

orrespondences can be induced from the concentration maps’ re- 

ults. For instance, if an EM concentration map shows significant 

resence of the EM in patches 5 (LL) and 8 (LL + LW), with higher

oncentration values in patch 5, and just negligible traces in the 

ther patches, it is safe to assume that this EM corresponds to the 

L pigment. 

Even for the MEx library, the results of the unmixing as judged 

y the concentration maps shown in Fig. 5 (right column) are 

ot completely satisfactory. For instance, EM3 (NY) is not detected 

ith a high concentration in patch four, and the two red pigments 

REP and CN, EM1 and EM4) tend to be confused to a certain ex- 

ent. On the other hand, LW is correctly identified as present in 

he three mixed patches (8, 9 and 10) in EM2 concentration map. 

he NFDL concentration maps ( Fig. 5 , left column) present certain 

imilarities with the MEx results. For instance, EM4 concentration 

ap in NFDL is rather similar to EM2 (LW) for manual extraction, 

nd EM1 from NFDL is similar to EM4 (CN) of the MEx library. The 

eepGun concentration maps ( Fig. 5 , middle column) show rela- 

ively good results for EM4 (presumably corresponding to LL), EM6 

which has similar appearance to the LW, MEx EM2, concentration 

ap) and EM2 (presumably REP). However, EM1 (presumably AZ) 

s confused with the LL present in patch 8, and the other three 

oncentration maps (EM3, EM5 and EM7) are very much alike. 

In the SWIR range, the concentration maps reflect less similar- 

ty between NFINDR and MEx libraries results. In general, none of 

he libraries is able to correctly reproduce the real contents of the 

eference image. 
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Fig. 5. VNIR range concentration maps in R hyperspace for the checker reference image and the three EM libraries tested. EMX stands for Endmember X. 
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Regarding the concentration maps in the -log R hyperspace, 

he best results correspond to the NFDL in the VNIR range, which 

learly benefits from the change to an additive model. 

Summarizing, neither concentration maps nor presence maps 

an capture accurately enough the pigment distribution in the 

hecker reference image with any of the three libraries tested or in 

ny of the spectral ranges, although some of the libraries produce 

esults that are reasonable if not entirely accurate. For instance, 

onsistent results were offered by NFDL in -log(R) hyperspace (see 

gures in Supplementary Material). In general, SWIR range tends 

o offer less consistent results. 

.1.2. Pigment identification results 

The best results are obtained by the NFDL in the SWIR range 

nd R hyperspace, with a 100 % hit rate in pigment identification, 

nd maximum MId values very near the tolerance of 0.02 for all 

Ms. The second-best results correspond to NFDL -log(R) hyper- 

pace in the VNIR range, with a hit rate of 85.7 %. DeGu obtains

t most four out of seven pigments in both ranges. Despite the 

ood unmixing results for -log(R) hyperspace in the VNIR range 

nd NFINDR, the pigment identification is slightly better in the 

WIR range and R hyperspace for this library. This suggests that it 

s convenient to include both ranges in the pigment identification 

rocedure. 

.1.3. Proposed method for analysis of the painting on copper 

Given the results for the copper reference plate with known 

nd regular pigment distribution, the following method will be 

mployed for obtaining concentration/presence maps and pigment 

dentification for the painting on copper: 

a) Use the -log(R) hyperspace and NFDL_p with 5 EMs extracted 

from a subsampled spectral image (1:2 ratio) to obtain the con- 
295 
centration and presence maps. The subsampling allows to re- 

duce the computation time required for the unmixing. 

b) Use the REFL library extracted from the copper plate to perform 

pigment identification in both R and -log(R) hyperspaces with 

NFDL_p. 

In this case, we expect lower rates of success in the pigment 

dentification phase, because the painting has been aged for a long 

eriod of time and the raw materials used for the pigments and 

inders might not be exactly the same in the painting and refer- 

nce copper plate. 

.2. Painting on copper 

Although we will show the results corresponding to the method 

roposed in Section 4.1.3 , for brevity, a complete analysis us- 

ng DeGu_p and MEx_p libraries was carried out. The results of 

hese libraries will be commented on only when they outperform 

FDL_p. 

.2.1. Unmixing results 

.2.1.1. Extracted EM libraries. In Fig. 6 , the NFDL_p libraries in 

NIR and SWIR range in -log(R) hyperspace are shown along with 

he MEx_p library. 

The NFDL_p EMs are clearly higher in scale than MEx_p EMs, 

nd they tend to be less flat in the SWIR range. 

.2.1.2. Spectral reconstruction quality. In Table 1 , the quality met- 

ics are shown for the NFDL_p (based on the NFINDR algorithm 

nd a linear mixing model), DeGu_p (based on Deep Learning for 

ndmember extraction and a non linear model) and MEx_p (based 

n manual EM extraction) libraries in both spectral hyperspaces 

nd both spectral ranges. 
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Fig. 6. VNIR range libraries (left) and SWIR range libraries (right) extracted with NFINDR (upper row) and by Manual Extraction MEx_p (Lower row) from the painting on 

copper. EMX stands for Endmember X. 

Table 1 

Spectral reconstruction quality metrics for the two EM libraries in VNIR and SWIR, and in both hyperspaces. The best results for each metric and 

spectral range are in bold. 

Library Hyperspace Mean cGFC (STD) Mean MSE (STD) Mean �E 00 (STD) Spectral range 

NFDL_p, MEx_p, DeGu_p R 0.0104 (0.010) 0.0743 (0.0309) 12.64 (5.11) VNIR 

0.0025 (0.0036) 0.0136 (0.0146) 4.16 (2.29) 

0.0037 (0.0036) 0.0324 (0.0270) 6.22 (4.39) 

NFDL_p, MEx_p -log(R) 0.0065 (0.0095) 0.0055 (0.0047) 3.81 (2.48) 

0.0051 (0.0074) 0.0076 (0.0125) 3.69 (2.50) 

NFDL_p, MEx_p, DeGu_p R 0.0032 (0.0103) 0.0108 (0.0121) – SWIR 

0.0051 (0.0074) 0.0076 (0.0125) –

0.0016 (0.0030) 0.0244 (0.0213) 

NFDL_p, MEx_p -log(R) 0.0035 (0.0055) 0.0047 (0.0100) –

0.0090 (0.0267) 0.0064 (0.0010) –
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In the VNIR range, the best results (this is, the lowest val- 

es of spectral metrics) correspond to MEx_p in -log(R) hyper- 

pace, although the best cGFC value is found in R hyperspace for 

his library. The metric values found for NFDL_p in -log(R) hyper- 

pace are close to the MEx_p library, with the lowest MSE values. 

owever, in R hyperspace the NFDL_p estimation is clearly worse 

han MEx_p estimation, and DeGu_p outperformed NFDL but not 

Ex_p. 

In the SWIR range, the best results for MSE are found again 

or NFDL_p in -log(R) hyperspace, and for cGFC in DeGu_p in R 

pace. In general, the quality of the estimation is acceptable or re- 

arkably good, depending on the hyperspace and range, save for 

FDL_p in VNIR range and R hyperspace. 

The beneficial effect for the scale sensitive metrics (MSE and 

E 00 ) of the -log(R) hyperspace transformation is remarkable, and 
296 
verall, the SWIR estimated spectra are closer to the original ac- 

ording to the spectral metrics, which is expected because they 

ave lower maximum values. 

.2.1.3. Presence and concentration maps. In Fig. 7 , the concentra- 

ion maps for the NFDL_p and MEx_p libraries in -log(R) hyper- 

pace and VNIR range are shown. The order of the MEx_p EMs 

orresponds to Fig. 6 . 

According to the XRF and XRD results [ 48 ], LL can be found

oth in the Virgin’s mantle and in the background. This is corrob- 

rated by the VNIR range concentration maps EM1 and EM2 for 

Ex_p (second row), and EM3 for NFDL_p (first row of Fig. 7 ). 

The CN pigment is found in the Virgin’s dress and in the car- 

ations, which is corroborated by MEx_p EM3 (second row) and 

FDL_p EM4 (first row). The LW is found in the carnations and 
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Fig. 7. Concentration maps in -log(R) hyperspace corresponding to the libraries shown in Fig. 6 . First row: NFDL_p VNIR range; second row: MEx_p VNIR range; third row: 

NFDL_p SWIR range; fourth row: MEx_p SWIR range. 
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n the Virgin’s chemise sleeves, which is corroborated by MEx_p 

M4 (second row) and NFDL_p EM1 (first row). The BB pigment is 

ound in the shadowed areas and in the background, which would 

e supported by MEx_p EM1 (second row) and NFDL_p EM3 (first 

ow). And finally, the NY pigment is found in some parts of the 

arnations and in the Child’s cloth. This would correspond to EM5 

n both libraries. The VNIR results are consistent, with some trend 

o confuse background with LL pigment in some areas for MEx_p. 

In the SWIR range, there are some remarkable findings: the first 

s that the confusion between BB and LL is less marked for MEx_p 

see EM1 and EM2 in the fourth row of Fig. 7 ). The second is that

or NFDL_p, the LW and CN results are intermingled in EM5 con- 

entration map (third row), while this does not happen for MEx_p 

see EM3 and EM4 in the fourth row). And the third is that the NY

oes not appear clearly in the NFDL_p EMs, while it seems to ap- 

ear in EM5 for MEx_p (fourth row). The NY pigment is the least 

resent in the painting and appears mostly in mixtures. Overall, 

he results for the MEx_p library in the SWIR are more consistent, 

ven if the estimation quality is lower than for NFDL_p. 
Table 2 

Pigment identification results for NFDL_p, using the copper r

Library Hyperspace Range Assigne

NFDL_p 

R 
VNIR 

LL, REP

-log(R) LW, BB,

R 
SWIR 

LW, CN

-log(R) BB, AZ,
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In Fig. 8 , the presence maps with a threshold of 0.25 are shown 

or both libraries and both ranges, in -log(R) hyperspace. 

Considering the inherent limitations of the unmixing tech- 

iques, the presence map results are rather satisfactory and con- 

istent with the pointwise XRF and XRD results [ 48 ]. It is found

ut that the carnations are a mixture of three EMs, one of them 

resent as well in the Virgin’s dress. Or that the Virgin’s veil is 

lso a mixture of at least three EMs. 

.2.2. Pigment identification results 

In Table 2 , the results from the pigment identification for 

FDL_p using REFL library as reference are shown. 

The best result is obtained for R hyperspace and SWIR range 

ith a hit rate of 80 %, failing to identify the LL pigment. How- 

ver, if one considers the union of the two ranges, there would be 

even pigments, of which only one is not present in the painting 

AZ). This union strategy seems to work better also for the -log(R) 

yperspace, which would result in six pigments, of which one is 

ot present in the painting (AZ). These results are of course condi- 
eference REFL library as reference. 

d labels Hit rate MId range 

, NY, REP, BB 60 0.13–0.27 

 BB, REP, BB 40 0.11–0.41 

, AZ, NY, BB 80 0.023–0.15 

 AZ, BB, NY 40 0.06–0.28 
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Fig. 8. Presence maps with a threshold of 0.25, corresponding to the libraries shown in Fig. 6 . Upper row: NFDL_p -log(R) VNIR range; second row: MEx_p -log(R) VNIR 

range; third row: NFDL_p -log(R) SWIR range; fourth row: MEx_p -log(R) SWIR range. 
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ioned by the very restricted and specific set of pigments used as 

eference. 

Regarding the MId range values, the NFDL_p obtains the lowest 

alue (0.023–0.15) for SWIR and R hyperspace. The results suggest 

hat the SWIR range is more reliable than the VNIR range, in agree- 

ent with the hit rate values. None of the other libraries obtain 

etter identification results than NFDL_p. 

. Conclusions 

In this study, different unmixing techniques are applied for pig- 

ent detection and identification in two spectral ranges: VNIR and 

WIR. The unmixing methods have been selected with the aim to 

ompare two different methodologies: using a non-linear Deep- 

earning based method in R space, and a linear classical method 

n -log(R) space. 

A reference palette has been prepared, containing the pigments 

resent in an oil painting on copper with the inscription “Boceto di 

ablo Veronese” on the back, plus AZ (not present in the painting) 

nd additional patches with mixtures. 

The proposed methodology to analyze the painting has been 

elected using the results obtained with a reference checkerboard 

mage obtained from this palette. For this image, the -log(R) hy- 

erspace unmixing results are satisfactory for the NFDL library in 

NIR range in terms of concentration maps and scale dependent 

uality metrics, although slightly worse for the shape-sensitive 

GFC metric. The pigment identification results are also successful. 
298 
The method was applied to the restored painting on copper us- 

ng NFDL_p in both R and -log(R) hyperspaces and in both spec- 

ral ranges. NFDL_p was able to provide plausible results for the 

oncentration and presence maps in the VNIR range. NFDL_p in 

 hyperspace (SWIR range) was the most successful method for 

igment identification. By merging the results of both ranges, the 

dentification would be complete, although AZ was also identified 

s present in the painting. This supports the usefulness of the 

WIR range both for unmixing and pigment identification in art- 

orks. 

The results show that, even with unsophisticated techniques (a 

lassical linear algorithm like NFINDR), for some instances it is 

ossible to obtain satisfactory results using only spectral informa- 

ion for analysis of naturally aged artworks on a somewhat unusual 

upport like copper. 

It is crucial to have adequate reference auxiliar pigment palettes 

or pigment identification using spectral reflectance information, as 

tated in other studies [ 29 ]. The main limitations of the proposed 

ethodology are in pigment identification in the painting, due to 

he intrinsic differences between the reference pigments (new) 

nd the painting pigments (aged). Although ageing can be mod- 

lled to some extent [ 58 ] or light-induced pigment degradation 

an be used [ 31 ], multiple variables are involved. The natural aging 

rocess changes the pigment spectral shape differently based on 

omposition, light exposure, and environmental factors. In many 

ases, these specific factors are unknown, adding complexity to the 

dentification task. The use of painting techniques which involve 
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ery thin layers of pigment, like glazing, must also be considered, 

nd will be taken into account in future studies. 

It is worth spending additional effort in refining spectral imag- 

ng and unmixing methods so that they can perform on par with 

lternative techniques without requiring a priori information. One 

imitation is the influence of the preparation techniques, binding 

gents, varnish, and ageing on the reflectance spectra. A multivari- 

te modelling of the changes introduced by all these factors could 

ead to more accurate results for stand-alone spectral information- 

ased pigment identification in the future. 
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